skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quintano, Mateus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AbstractThe characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case,$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + /$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + , as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case,$$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - /$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - . We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + to$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From$$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - to$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - we observed an increase in covalency without altering the bond nature. Distinct$$\pi $$ π back-donation disparity could be confirmed by comparison with the isolated CN$$^-$$ - system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications. Graphical abstractThe adiabatic connection scheme relates local to normal modes, with symmetry breaking giving rise to axial and equatorial group local frequencies 
    more » « less
  2. Abstract Two-dimensional infrared spectroscopy has reported highly delocalized in-plane base vibrations in the fingerprint region of nucleotide monophosphates, suggesting the involvement of base pair C=O and C=C ring bonds and considerable interaction between C=O bond stretches. The high delocalization results in congested vibrational spectra, which complicates the assignment of the peaks. This congestion also extends to Watson–Crick base pairs. We applied in this work the characterization of normal mode procedure, a special feature of our local mode analysis, and could for the first time identify the C=O and C=C bonds being engaged in base pair coupling and quantify their contribution to each of the delocalized fingerprint vibration. In addition, a detailed and quantitative description of the hydrogen bonds involved in the Watson–Crick base pairs was provided. Based on the results of this study, we developed a new protocol to elucidate on the assignment of bands in the vibrational spectra of nucleic acids by probing the vibrational space for specific interactions between functional groups prior to and upon base pairing. This protocol will aid to fill the gap between deoxyribonucleic acid structural information and vibrational spectroscopy experiments by facilitating the interpretation of spectra on a quantitative basis. 
    more » « less
  3. This study provides new theoretical insights into the vibrational spectra of Ln(iii) complexes, along the lanthanide series by utilizing the LModeAGen protocol and integrating cutting-edge topological ideas. 
    more » « less
    Free, publicly-accessible full text available January 22, 2026